GradQuantumSpring2014

From Predictive Chemistry
Revision as of 12:23, 11 April 2014 by David M. Rogers (talk | contribs) (Phase III)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Quantum Mechanics II

Course Info

  • Course Number: CHM 6938-009
  • Meeting Times: Tuesdays and Thursdays, 12:30 - 01:45PM
    • No meetings on Mar. 11 or 13 due to USF Spring Break (Mar. 10-15)
    • Midterm: Thursday, February 20, 12:30-13:45 (regular class time)
    • Final: Thursday, May 1, 10:00-12:00 (following USF finals schedule)
  • Credit Hours: 3
  • CRN: 11305

Advanced Reference Material

The instructor may be reached anytime by phone 4-4298 or email (username: davidrogers on usf.edu).

Course Overview & Objectives

Having mastered the foundations of Quantum Mechanics, this course explores advanced and emerging topics through critical reading of the primary literature. By the end of the course, you will be able to evaluate, propose and carry out critical tests of ideas and methods directly from the literature.

Grading & Due Dates

Your work will be graded based on homework assignments (20%), participation in class discussion (20%), and two exams (30% each).

Planned Topics

Phase I

Topics:

  • Thermochemistry, chemical reactions and kinetics
  • Scripting for Managing El. Structure Calcs
    • Working with atomistic data
    • Running large parallel electronic structure calculations
    • The role of basis functions and convergence
  • Basic statistics of Boson and Fermion energy distributions - (stat) statistics on top of (QM) statistics.

References:

Phase II

Topics:

  • Excited States, Rayleigh-Schrodinger Perturbation (compare to MP2)
  • Polarizablility and other Dispersion Forces
  • Coupled-Cluster Expansions
  • Perturbation Theory Decomposition of Intermolecular Energies

References:

Phase III

Topics:

  • Foundations of Density Functional Theory
    • Statistics of an electron gas. The Kohn-Sham decomposition and the resulting alphabet soup of density functionals.
  • Shortcomings of DFT (reproducing electron number discontinuities)
  • Solvent Effects and Approximations
    • QM/MM methods applicable to the condensed phase

References:

Phase IV

Topics:

  • Path Integral Formulations
    • Derivation of classical mechanics, Heisenberg and Schrodinger.
    • Elementary path integrals
  • Quantum and Classical Fluctuation-Dissipation Theorems
  • Optional material: Quaternion representation of rotations and the Dirac equation.

References: