Difference between revisions of "CompSciWeek11"

From Predictive Chemistry
Jump to: navigation, search
(Class 1)
(Class 1)
Line 7: Line 7:
 
** Basic linear algebra operations
 
** Basic linear algebra operations
 
** Timing Strassen (see also Winograd)
 
** Timing Strassen (see also Winograd)
  +
  +
== Distribution Function Code ==
  +
  +
This illustrates dramatic simplifications that can be obtained by using tensors in numpy.
   
 
<source lang="python">
 
<source lang="python">
Line 36: Line 40:
 
print get_rdf(x, L, 20)
 
print get_rdf(x, L, 20)
 
</source>
 
</source>
  +
  +
Rodrigues' formula code. This is for completeness, so you can generate 3D rotations given in axis-angle notation.
   
 
<source lang="python">
 
<source lang="python">
 
# Build rotation matrix to rotate about an arbitrary vector using the right-hand rule.
 
# Build rotation matrix to rotate about an arbitrary vector using the right-hand rule.
 
# Uses Rodrigues' rotation formula (in the quaternion representation).
 
# Uses Rodrigues' rotation formula (in the quaternion representation).
def build_rotation(n, theta):
+
def build_rotation(u, theta):
m = sum(n*n)
+
n = u
  +
m = sum(n*n) # check that n is normalized
 
if(m < 1.0-1.0e-10 or m > 1.0+1.0e-10):
 
if(m < 1.0-1.0e-10 or m > 1.0+1.0e-10):
 
n /= sqrt(m)
 
n /= sqrt(m)
Line 49: Line 55:
 
s = sin(theta)
 
s = sin(theta)
 
c = cos(theta)
 
c = cos(theta)
trans[0,0] = c + n[0]*n[0]*(1.0-c) # Rodrigues' Rotation Formula
+
trans[0,0] = c + n[0]*n[0]*(1.0-c)
 
trans[0,1] = n[0]*n[1]*(1.0-c) - n[2]*s
 
trans[0,1] = n[0]*n[1]*(1.0-c) - n[2]*s
 
trans[0,2] = n[1]*s + n[0]*n[2]*(1.0-c)
 
trans[0,2] = n[1]*s + n[0]*n[2]*(1.0-c)

Revision as of 14:28, 3 November 2014

Class 1

  • Tensor Manipulations - distance distributions in random point set exercise
  • Rodrigues' Rotation Formula - the preferred method when you have to work with an angle.
  • Matrix Multiplication
    • Basic linear algebra operations
    • Timing Strassen (see also Winograd)

Distribution Function Code

This illustrates dramatic simplifications that can be obtained by using tensors in numpy.

<source lang="python">

  1. Radial distribution function calculator for un-scaled distributions.
  2. (g(r) is get_rdf() * L**3/N and goes to 1).

from numpy import *

  1. Get the unnormalized rdf in an isotropic cubic box of side length L
  2. return unit is particles per L's length unit^3
  3. Note that grid methods should be used for very large N.

def get_rdf(x, L, M):

   D2 = x - x[:,newaxis]
   D2 -= L*floor(D2/L+0.5) # wrap into box
   r2 = sqrt(sum(D2*D2, -1))
   s = arange(M+1)*0.5*L/M
   h, _ = histogram(r2, s)
   h[0] -= len(x) # remove self-distances
   # Divide by volume (times an extra (N-1), since we counted
   #                   N*(N-1) distances, but the density scales as N)
   h = h.astype(float)
   h /= (len(x)-1) * 4*pi/3.0*(s[1:]**3 - s[:-1]**3)
   return h
  1. This should give a uniform RDF of 1000 pt / L**3 (= 1 here).

def test():

   N = 1000
   L = 10.0
   x = random.random((N,3))*L
   print get_rdf(x, L, 20)

</source>

Rodrigues' formula code. This is for completeness, so you can generate 3D rotations given in axis-angle notation.

<source lang="python">

  1. Build rotation matrix to rotate about an arbitrary vector using the right-hand rule.
  2. Uses Rodrigues' rotation formula (in the quaternion representation).

def build_rotation(u, theta):

       n = u
       m = sum(n*n) # check that n is normalized
       if(m < 1.0-1.0e-10 or m > 1.0+1.0e-10):
               n /= sqrt(m)
       trans = zeros((3,3), float)
       s = sin(theta)
       c = cos(theta)
       trans[0,0] = c + n[0]*n[0]*(1.0-c)
       trans[0,1] = n[0]*n[1]*(1.0-c) - n[2]*s
       trans[0,2] = n[1]*s + n[0]*n[2]*(1.0-c)
       trans[1,0] = n[2]*s + n[0]*n[1]*(1.0-c)
       trans[1,1] = c + n[1]*n[1]*(1.0-c)
       trans[1,2] = -n[0]*s + n[1]*n[2]*(1.0-c)
       trans[2,0] = -n[1]*s + n[0]*n[2]*(1.0-c)
       trans[2,1] = n[0]*s + n[1]*n[2]*(1.0-c)
       trans[2,2] = c + n[2]*n[2]*(1.0-c)
       return trans

</source>

Class 2

  • Implicit solutions to linear algebraic equations
    • Least-squares fitting
    • Repetition for point sets - project out and re-fit
    • Review projection and orthogonality (see also Gram-Schmidt)
    • Solution by factorization + forward / reverse substitution
  • Minimization the hard way - nonlinear problems Optimize
    • Transcendental problem, 5th order polynomials, etc.
    • Geodesic paths via numerical optimization