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W H AT  I S  A  M U LT I P O L E  E X PA N S I O N ?
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FA R - F I E L D  I N T E R A C T I O N  E

MA

MB

Jacobson, Williams, Herbert, JCP 130, 2009. 

• Potential function expansion 

• Transferable, Polarizable FFs 

• Fast multipole method, O(N)
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B U T  I T ’ S  N O T  S O  S I M P L E ?

Spherical multipoles are efficient, yet unintelligible.
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One step too far!

White and Head-Gordon, JCP 101, 1994.
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T H E  R E A L  P R O B L E M

One step too far!

Applequist, J. Phys. A, Math Gen, 22, 1989.
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Rogers (submitted), 2014.

B A C K  T O  T H E  D R A W I N G  B O A R D .

directional derivative

spherical projection
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Q U A D R A T U R E

• Optimal number of points (p2) 

• Physical interpretation = 
surface charge distribution
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O U T E R  E X PA N S I O N

• Getting in is easy

I N N E R  E X PA N S I O N
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O U T E R  E X PA N S I O N

• Getting out is even easier!

I N N E R  E X PA N S I O N

�(y) =

Z

S

X

n

Ln(y, r̂)�i(r̂) d
2r̂

' qi
|y � r̂i|

�(x) =

Z

S

�

o

(r̂)
X

n

L

n

(r̂, x) d2r̂

' q

i

|x� r̂

i

|

(may require scaling S)

⇢(x)

⇢(y)

�(x)

�(y)



E R R O R ?

Table 1: Boundary integrals over a source distribution on a spherical surface.
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scaled by 1/r2 to put them outside the sphere,
and the evaluation test points likewise inverted
to the inside, shrinking toward r = 0.

For comparison, the simple summation ofP
i wi/4⇡(r�Rr̂i) using the quadrature weights

as charges is shown in the right panel of
Fig. 2. The pre-factor for both error curves con-
verges at a radius above 3, showing that the
quadrature-based representation gives highly
accurate point charges that simultaneously rep-
resent all multipoles. Practically, this solves
the problem of placing O(p2) discrete charges to
mimic all multipolar moments up to arbitrary
order.1,13,18 This is also the reason for the sym-
metry of the shifting formulas – the weights are
arrived at through the same process of fitting
the inner or outer expansion.

Figure 3 shows the error in multipole shift-
ing operations, plotted as a function of angle
from the shift direction. For the outer expan-
sion, the test points are fixed at R = 2, while
the source distribution is shifted to the right by
0.2, 0.6, and 0.8. The locations of the source
points were scaled down for each shift to main-
tain contact of the rightmost face of the source
cube with the unit bounding sphere. Summa-
tion of

P
i wi/4⇡(r� r̂i) from the representation

weights had nearly identical error (not shown).
For the inner expansion, the source points were
inverted to lie outside the sphere and remain
fixed. The evaluation sphere started at the ori-
gin with R = 1/2, and was successively shifted
in the x-direction by 0.1, 0.2, 0.3, and 0.4, with
the radius scaled down to maintain contact be-
tween the rightmost point of original evaluation
sphere and the shifted version.

The error of the inner expansion shows much
more variation as a function of the cosine with
respect to the shift direction, since the distance
to the unit sphere is more quickly varying than
in the outer expansion geometry. The scaling of
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Figure 2: Pre-factors for the multipole repre-
sentation error. The residual is scaled by rp+1

(outer expansion, labeled +p) or r�p (inner ex-
pansion, labeled �p). The left panel shows
the error of exact quadrature using Eq. ?? or
Eq. ??, while the right shows the error of sum-
ming 1/4⇡r, treating the quadrature points as
point sources. Point charge sources make ex-
cellent representations of multipole sources and
external fields.
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http://arxiv.org/abs/1411.0011


F U N  W I T H  M U LT I P O L E S
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the outer expansion with p, also appears some-
what better because the source locations were
scaled down with increasingly large shifts in
that geometry.

The computational scaling of naïvely evalu-
ating the moment translation formula Eq. 37 is
p4. This cost scales as p3 for spherical harmonic
translations that perform rotations to align the
translation axis with the azimuthal reference
axis, ẑ.37 Similar savings can be realized us-
ing the quadrature-based scheme, when using
equally spaced points along rings spaced verti-
cally according to Gauss-Legendre38 or Gauss-
Jacobi39 quadrature. Fast, O(p2 log p), trans-
formations between harmonics and the Gauss-
Jacobi quadrature representation are avail-
able.39,40 Further, rotations that make use of
these transformations can achieve O(p3) scal-
ing or, using approximate algorithms for matrix
sparsification, O(p2 log p).38 Since the matrix in
Eq. 37, [K(

R0r̂
j

+t

R1
, r̂i)]ij has as many unique ele-

ments as unique cosines, r̂i · r̂j, quadrature rules
like those above containing O(p) vertical rings
have a translation scaling as O(p2) after rota-
tion.

Figure 4 shows the convergence of solutions to
potential flow for the motion of three spheres
through an incompressible 3D fluid. The
smaller spheres have radius 1, are located at
x = �1 and y = ±3/2 and are traveling with
unit velocity in the +x direction. The larger
sphere has radius 3, is located on the y axis
at x = 4, and is traveling with unit velocity
in the �x direction. The potential in the fluid
was represented using the outer expansion of
Eqns. ?? and ??, with the potential represented
directly as weights on the quadrature set over
each sphere. Error in the normal derivative
boundary condition was evaluated at the spher-
ical surfaces using a Lebedev quadrature grid of
order 59 with 1202 points. As the quadrature
order (p) is increased, more points are added
to each sphere, and the discrepancy between
the computed and imposed normal velocity de-
creases exponentially.
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Figure 4: Multipole representation of potential
flow for three spheres in the z = 0 plane (up-
per panel, p = 8). Color indicates the poten-
tial field. The flow velocity was rendered us-
ing line integral convolution. The lower panel
shows the surface-averaged boundary error di-
vided into contributions from the larger and
smaller spheres.
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C O N C L U S I O N S

• Spherical harmonics considered harmful 

• May have convergence issues! 

• Real-space Quadrature 

• Basis vectors are real 

• Weights are charges 

• Approx. power and dimension identical 

• Symmetry is apparent 

• Shifting functions are identical to initial fitting!
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