DAVID M. ROGERS, UNIV. SOUTH FLORIDA

MULTIPOLES FROM REAL
 SPACE QUADRATURE

 (SERM)ACSNashville, 2014

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2} f^{\prime \prime}(0)+\ldots
$$

WHAT IS A MULTIPOLE EXPANSION? A coefficient.

$$
V_{A B}^{\mathrm{es}}=M_{A} \cdot T_{A B} \cdot \tilde{M}_{B}
$$

FAR-FIELD INTERACTION E

- Transferable, Polarizable FFs
- Potential function expansion
- Fast multipole method, $\mathbf{O}(\mathbf{N}) \quad T=\left[\begin{array}{ccc}r^{-1} & \partial r^{-1} & \partial^{(2)} r^{-1} \\ \partial r^{-1} & \partial^{(2)} r^{-1} & \partial^{(3)} r^{-1} \\ \partial^{(2)} r^{-1} & \partial^{(3)} r^{-1} & \partial^{(4)} r^{-1}\end{array}\right]$

Jacobson, Williams, Herbert, JCP 130, 2009.

$$
\begin{gathered}
\partial_{\alpha \beta \gamma \delta}^{(4)} \quad \text { Cartesian: } 3^{4}=81 \text { component tensor! } \\
M_{l m}=\sum_{i} q_{i}\left|r_{p}\right|^{l} C_{l m}\left(\hat{r}_{p}\right) \\
V_{l, k}=\binom{2 l+2 k}{2 l}^{1 / 2} R^{-l-k-1} \sum_{m=-l-k}^{l+k}(-1)^{m} C_{l+k,-m}(\hat{R})\left[M_{A}^{(l)} \otimes \tilde{M}_{B}^{(k)}\right]_{l+k, m} \\
{\left[M_{A}^{(l)} \otimes \tilde{M}_{B}^{(k)}\right]_{l+k, m}=\sum_{n=-l}^{l} \sum_{j=-k}^{k} M_{A, n}^{(l)} \tilde{M}_{B, j}^{(k)}\langle l, n ; k, j \mid l+k, m\rangle} \\
\text { Jeziorsk, Moszynski, Szalewicz, Chem. Rev. 94, 1994. }
\end{gathered}
$$

BUT IT'S NOT SO SIMPLE?

Spherical multipoles are efficient, yet unintelligible.

THE REAL PROBLEM

$$
\begin{aligned}
\frac{1}{|x-y|} & =e^{-y \cdot \partial} \frac{1}{|x|} \quad \quad \text { One step too far! } \\
& =\sum_{l=0} \frac{|y|^{l}}{|x|^{l+1}} P_{n}(\hat{x} \cdot \hat{y}) \\
& =\sum_{l=0} \sum_{m=-l}^{l} O_{l, m}(x) M_{l, m}(y)
\end{aligned}
$$

$$
\begin{aligned}
O_{l m}(x) & =|x|^{l}(l+|m|)!P_{l m}\left(\cos \theta_{x}\right) e^{-i m \phi_{x}} \\
M_{l m}(x) & =|x|^{-l-1}(l-|m|)!^{-1} P_{l m}\left(\cos \theta_{x}\right) e^{i m \phi_{x}}
\end{aligned}
$$

THE REAL PROBLEM

$$
\begin{aligned}
& \frac{1}{|x-y|}=e^{-y \cdot \partial} \frac{1}{|x|} \quad \text { One st } \\
&=\sum_{l=0} \frac{|y|^{l}}{|x|^{l+1}} P_{n}(\hat{x} \cdot \hat{y}) \\
&=\sum_{l=0} \frac{|y|^{l}}{|x|^{l+1} n!} \hat{x}^{(n)}(n) \mathcal{T}_{n} \hat{y}^{(n)} \\
& \partial^{(n)}|r|^{-1}=(-1)^{n}|r|^{-2 n-1} \mathcal{T}_{n} r^{(n)}
\end{aligned}
$$

Rogers (submitted), 2014.

$$
\begin{aligned}
& \quad(-y \cdot \partial)^{n}|x|^{-1} / n!=L_{n}(y, x) \quad \text { directional derivative } \\
& =\int_{S} L_{n}(y, \hat{r}) K(\hat{r}, x) d^{2} \hat{r} \quad \text { spherical projection } \\
& \text { BACK TO THE DRAWING B OARD. }
\end{aligned}
$$

QUADRATURE

- Optimal number of points $\left(p^{2}\right)$
- Physical interpretation= surface charge distribution

$$
\begin{aligned}
& \int_{S} f(y, \hat{r}) \sigma(\hat{r}) d^{2} \hat{r} \\
& =\sum_{i}(\underbrace{w_{i} \sigma\left(\hat{r}_{i}\right)}_{q_{i}}) f\left(y, \hat{r}_{i}\right)
\end{aligned}
$$

INNER EXPANSION

$$
\sigma_{i}(\hat{r})=\int K(\hat{r}, x) \rho(x) d^{3} x
$$

OUTER EXPANSION

$$
\sigma_{o}(\hat{r})=\int \rho(y) K(y, \hat{r}) d^{3} y
$$

- Getting in is easy

INNER EXPANSION

OUTER EXPANSION

$$
\begin{aligned}
\Phi(x) & =\int_{S} \sigma_{o}(\hat{r}) \sum_{n} L_{n}(\hat{r}, x) d^{2} \hat{r} \\
& \simeq \frac{q_{i}}{\left|x-\hat{r}_{i}\right|}
\end{aligned}
$$

- Getting out is even easier!

ERROR?

$O\left(\frac{R}{x}\right)^{p+1}$

$O\left(\frac{y}{R}\right)^{p}$

Prefactor (au)

Rogers (submitted), 2014.

FUN WITH MULTIPOLES

[1] Elking et. al., J. Comput. Chem. 32, 2011.

ACKNOWLEDGMENTS

- University of South Florida Research Foundation
- Jaydeep Bardhan, Northeastern Univ.

CONCLUSIONS

- Spherical harmonics considered harmful
- May have convergence issues!

Makino, J. Comp. Phys. 151, 2009.

- Real-space Quadrature

USF
UNIVERSITY OF
SOUTH FLORIDA

- Basis vectors are real
- Weights are charges
- Approx. power and dimension identical
- Symmetry is apparent
- Shifting functions are identical to initial fitting!

