LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING

DAVID M. ROGERS

1. DEFINITIONS

1.1. Tensors. A tensor is just a block of numbers. Like anything computational, it’s
meaning depends on how you use it. These notes describe the peculiar interpretation
called linear algebra - where subsets of n consecutive numbers in a tensor are viewed as
points in n-dimensional space. The space could correspond to the familiar 3D world (each
atom is a point in R? space) or to abstract spaces, like the O(1 million) pixels in an image
(each image is a point in R10° space) or to a set of 12 “basis” functions (each function in
the space is a point in R12).

Tensor spaces are defined by their shape. The order of a tensor is the number of indices.
Low-order tensors have special names:

e A scalar is just a number. It has no indices, and so is an order-zero tensor — in the
space Tj.

e A vector with m real components is in the space R™. These vectors are the build-
ing blocks of linear algebra. They represent points in m-dimensional space, and
higher-order tensors are thought of as blocks of vectors.

An empty vector can be declared in python using, when m = 12,

from numpy import *; x = zeros(12). These are also known as null-vectors,
since they remain zero with linear transformations, and because null (¢) is a math-
ematical term denoting the empty set.

e A vector with m complex components is in C™ (since C conventionally stands for
the set of complex numbers)

Both of these are in an order-1 tensor space, T},.

e An n X m matrix of real numbers (pronounced n rows by m columns) is in the

space M,, ,,, and can equally be said to be T3, ,.

More general tensor spaces can be referred to using a list of numbers, indicating the
shape. Most of the numpy routines that build vectors allow you to build tensors of an
arbitrary shape as well. For example 2 sets of 4 points in 3D space could be represented as
a tensor in the space T4 3. An empty (zero) tensor with this shape can be declared using

>>> M = zeros((2,3,4), dtype=float64)

Each index moves along a different dimension. In python, the dimensions are numbered
consecutively from 0 — so the last index is dimension 2. The last index holds the individual

vectors. The ordering of the indices depends entirely on how you have chosen to address
1

LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING 2

your tensor. For example, if groups are along dimension 0, and sub-groups are along
dimension 1, you can address the second vector from the first group as M[0, 1]

1.2. Inner Product. The inner product (also known as the dot product) on 2 vectors is
defined as

m—1
(1) zoy=Y_ miy
=0

It takes two vectors in the same space — here x € R™,y € R™, and returns a number.
In python (using numpy), the dot product can be written,

>>> x = arange(12); y = ones(12) # test data
>>> dot(x,y) # evaluates to 12(12-1)/2
>>> sum(x*y) # equivalent

1.3. Vector Relations. The norm of a vector is just

(2) 2l = Vaa

A vector with a unit norm is said to be normalized. You can normalize any vector by
dividing by its magnitude, that is x — x/|z|.
The inner product is the basis for defining the shortest angle between two vectors, using
-y
(3) coS Oy = ———
|z|ly]
This is a general definition for multi-dimensional vectors.
Two vectors that meet at right-angles are said to be perpendicular, or orthogonal. Math-
ematically, this means

(4) 0= |z||ly|cos by = x - .

Viewed algebraically for two vectors z,y € R", this is a linear equation in 2n variables.
It can be used to determine gy given x and all y1,---y,—1. You can also make a vector y
orthogonal to by subtracting its projection along z, which is y — y — 2z - y/|z|?.

For complex vectors (€ C"), these definitions break down a little bit. The norm can
be salvaged by re-defining the inner product as x -y = >, zy;, which at least gives every
vector a positive norm. This is not the same as numpy’s dot.

1.4. Matrix Multiplication. The matrix-vector product between A € M,, ,, and a vec-
tor, z € R™ is:

(5) bi:(A'$)i: Aijl‘j, i:(),l,...,n—l

LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING 3

This can be visualized by breaking up the n x m matrix, A, into rows as

b[0] [AJ0,)] Al0,:] - x
b|1 All,: All,:] -z
o I = N R
bln — 1] | Aln—1,:] An—1,:] -z

This comes from thinking about turning the matrix, A, and attaching it to x.
You can equivalently think about turning the vector, x, and attaching it to the top
dimension of A. Each element of the vector hits a different column of the matrix, so

g
b=[A[LO]| AL 1]| - [Alm—1]] - xz
x[m — 1]
(7) = A[,0]z[0] + A[;, 1]z [1] + - - - + A[:,; m — 1]z[m — 1]
The matrix-matrix product is defined by:

k
Each element of Y comes from a row of A and a column of X. Obviously, the last dimension
of A has to match the first dimension of X. If A € M,; and X € My, then Y € M,
(the output matrix has the first and last dimensions of matrices A and X, respectively).
You can visualize this by grouping the left matrix into rows and the right into columns,

A0,]

All,:]
(9) Y = : [(X[,0]| X[, 1]] -+ | X[5,e—1]].

Ala - 1,:]

2. LINEAR TRANSFORMATIONS

Linear transformations express a scale and a rotation of a vector about the origin. Be-
cause we can build objects out of vectors, we only have to consider how linear transforma-
tions act on one vector at a time. The linear transformation of a vector, v, is

(10) Ta(v) =Y Aijv;
j

where the coefficients, A;; are arbitrary, but can’t depend on v. The linear transformation
is defined to be linear in v — so that (for a scalar [i.e. a number]| «)

(11) Ta(av) = aTs(v)
and

(12) Ta(v+w) =Ta(v) + Ta(w).

LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING 4

Notice that the linearity properties (Eq. and Eq. also apply to both sides of
the dot product (Eq. . Because the dot product was used to define matrix-vector and
matrix-matrix multiplication, both of those products are also linear in the left and right
sides.

Translations are not linear transformations, since they do not have the properties above.
However, they can be expressed as linear transformations if we bend our minds a little
to re-define points. This is not covered here, but will be the subject of the lecture on
homogeneous coordinates.

How do we figure out the coefficient matrix, A;; for a linear transformation? We reason
as follows. The coefficients will tell us how to transform a general vector,

(13) v =0Ty + V11 + -+ Up—1Tm—1-
So we need only ask what the linear transformation does to each of the &;-s, since
(14) La(v) =voLla(Zo) +v1La(#1) + - +vm_1La(Tm-1)

The Z;-s can be any set of directions that allow us to write down a general vector using
Eq. A particularly simple choice is given by the global frame,

10 - 0
o A 01 --- 0

(15) (&g | 21| -+ | Ene1] = =1
00 - 1

The last = sign notes that the identity matrix, I (identity(N) in numpy) is defined by a
matrix with ones along the diagonal.

The similarity between Eqns. [[3]and [7]is the reason that sets of “basis vectors” are often
written as

(16) A= [&o|d1] | &na].
The matrix A describes a coordinate frame.
3. INVERSES

If we have a linear transformation from v to T4(v), we might ask about the reverse of
this operation. How do we get from a transformed vector back to the original? In general,
it isn’t possible to go back - since A may have been a matrix of zeros, or something awful

LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING 5

like that. However, if it is possible to go back, then the linear transformation from z to
y = Ax can be un-done by inverting the matrix, x = A~'y. The existence and uniqueness
requirements for this inverse transformation are essentiallyﬂ the same as the existence and
uniqueness of the matrix inverse.

For changes in coordinate frames, (Eq. , the matrix inverse is very easy to find, since

AT
&
(17) AT A= ; go|@1| | EBna] =T =AT"A
R
SO
(18) A7t = AT

This only happens when &; - ; = 0 for ¢ # j and %; - £; = 1 - a so-called orthonormal set
of basis vectors.

4. GENERALIZATION TO TENSORS

We have seen that the matrix-matrix product is defined using dot products between
vectors composing the two matrices. What if we change the addressing of the matrices, or
want to do multiple matrix-matrix products between sets of matrices? The general case
that handles all of these is called the tensor contraction.

When two tensors are multiplied together, say A € Ty, ..
we now have lots of possible products over k 4 p indices,

(19) Ci07i17---7ik+p—l = AiOailv"'vik—lB

This is the complete tensor outer product. No contraction is performed, and

GNE—1

and B € Tng,ma,....;mp—15

Uy Tk+1y-+yTktp—1

Ce Tno,...,nk_l,mo,...,mp,1-

For two vectors, A € T}, and B € T,,, this outer product generates a matrix C € T, y,.
The other way to combine vectors is the inner product. The inner product pairs the indices
of A and B and sums, so n has to equal m.

A general tensor contraction pairs some of the indices, and takes an outer product over
the rest of the indices. Labeling the indices that are summed with lowercase letters, and
the indices that are not summed with uppercase letters makes it simple to express tensor
contractions. Here are some examples, along with the corresponding numpy code using
tensors filled with ones. Of course you have to declare Ni, etc. as the size of each array.

e A scalar-vector product (inner or outer) ¢y = aby
>>> ¢ = l*ones(Ni)

e A vector-vector inner product, ¢ = a;b;
>>> ¢ = tensordot(ones(Ni), ones(Ni), [0,0])
(or any of the methods above for the dot product)

1y say essentially, since the actual best way to go back is the matrix pseudoinverse, A =
numpy.linalg.pinv(A), but the pseudoinverse is essentially the inverse anyway.

LINEAR ALGEBRA NOTES FOR INTRO. SCIENTIFIC COMPUTING 6

e A matrix-vector product, c; = Ar;b;
>>> ¢ = tensordot(ones((Ni,Nj)), ones(Nj), [1,0])
e A matrix-matrix product: Cr; = A By (for C = A - B)
>>> C = tensordot(ones((Ni,Nk)), ones((Nk,Nj)), [1,0])
e A matrix-matrix product including a transpose: Cr; = AprByy (for C = AT - B)
>>> C = tensordot (ones((Nk,Ni)), ones((Nk,Nj)), [0,0])
e A 2-way tensor contraction: Crjx = ArjstBskt
>>> C = tensordot (ones((Ni,Nj,Ns,Nt)), ones((Ns,Nk,Nt)), [(2,3), (0,2)])
Note that the labels on the indices are “dummy” variables. The only requirement is that
they match between the sides — just like f(z,y) = zy can be written f(y,z) = yz. Also,
when an index is summed over, both tensors must have the same size along that dimension
(otherwise the sum won’t make sense).
Test these out, and check the shapes of the input and output tensors (e.g. C.shape) to

be sure you understand how the indices are combining. With a little practice, you’ll be
fluent in the art of index accounting.

	1. Definitions
	1.1. Tensors
	1.2. Inner Product
	1.3. Vector Relations
	1.4. Matrix Multiplication

	2. Linear Transformations
	3. Inverses
	4. Generalization to Tensors

